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The spatial struggle of tit-for-tat and defect

V.C.L. HUTSON a~np G. T. VICKERS
School of Mathematics and Statistics, Applied Mathematics Section, The University of Sheffield, Sheffield S3 7RH, U.K.

SUMMARY

The pioneering work by Trivers (1971), Axelrod (1984) and Axelrod & Hamilton (1981) has stimulated
continuing interest in explaining the evolution of cooperation by game theory, in particular, the iterated
prisoner’s dilemma and the strategy of tit-for-tat. However these models suffer from a lack of biological
reality, most seriously because it is assumed that players meet opponents at random from the population
and, unless the population is very small, this excludes the repeated encounters necessary for tit-for-tat to
prosper. To meet some of the objections, we consider a model with two types of players, defectors (D) and
tit-for-tat players (T, in a spatially homogeneous environment with player densities varying continuously
in space and time. Players only encounter neighbours but move at random in space. The analysis
demonstrates major new conclusions, the three most important being as follows. First, stable coexistence
with constant densities of both players is possible. Second, stable coexistence in a pattern (a spatially
inhomogeneous stationary state) may be possible when it is impossible for constant distributions (even
unstable ones) to exist. Third, invasion by a very small number of T-players is sometimes possible (in
contrast with the usual predictions) and so a mutation to tit-for-tat may lead to a population of defectors
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being displaced by the T-players.

1. INTRODUCTION

One of the most interesting problems in evolutionary
biology is to find a convincing explanation for the
evolution of cooperative (or social) behaviour among
unrelated individuals in a species. There are a number
of mechanisms that have been suggested (see for
example the review by Mesterton-Gibbons & Dugatkin
1992) and it is likely that each should be valid under
certain circumstances and even that all could some-
times operate together. However, one particular class
of model, that based on repeated games — in particular
the iterated prisoner’s dilemma (1PD) — appears par-
ticularly attractive and has been much studied over the
past 25 years. One of the most interesting strategies is
tit-for-tat (TFT), where a player cooperates until the
other defects after which he does the same as his
opponent did on the previous play. Some -early
references are Trivers (1971), Brown et al. (1982),
Axelrod & Hamilton (1981), Maynard Smith (1982),
Axelrod (1984) and elaborations of the original model
are introduced in for example Feldman & Thomas
(1987), Nowak & Sigmund (1990, 1994) and Nowak et
al. (1994). Much of the literature on 1pD is concerned
with theoretical aspects and there is rather little
published, quantitative work on the application of
these ideas to real populations. Nonetheless coop-
eration is widely observed even in situations where kin
selection does not operate, and a great deal of attention
has focused on the model recently. To quote just one
authority (Dawkins 1989, p. 229): ‘These conditions
[for the operation of the 1PD and TFT] are certainly met
all around the living kingdoms’.
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Except in certain special circumstances, the above
models appear to ignore certain features which seem
central to the problem. For example, a basic as-
sumption is that players repeatedly play either a single
opponent or a range of opponents chosen at random
from the population. Both of these assumptions are
unrealistic. For unless the total population is very
small, the assumption of random interactions with the
whole population will imply that one is unlikely to
meet an opponent again. This is inconsistent with the
repeated interactions which are essential if the 1pD is to
predict the evolution of cooperation (see Dugatkin &
Wilson, p. 689, 1991). Also, players will only meet their
near neighbours (in space) and mobility will affect the
outcome (as whether or not players have met before is
clearly crucial). For the same reason, the death rate
will also be vital. It is inevitable then that the
spatial relation of players is a crucial factor. A number
of other shortcomings can also be mentioned. One of
the most important is that the classical models do not
explain how a small number of players who always
play trr (T-players) can invade a population of
players who always defect (D-players). Nor do they
allow a mixed population of T- and D-players to
coexist stably. There are a number of other criticisms
which have been made. In some cases suggestions
(sometimes perhaps a little artificial) have been given
as to more effective mechanisms, some representative
references with interesting comments being Eshel &
Cavalli-Sforza (1982), Dugatkin & Wilson (1991),
Enquist & Leimar (1991), Mesterton-Gibbons (1992),
Mesterton-Gibbons & Dugatkin (1992) and Houston
(1993). The importance of a spatial structure for the
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1pD has long been realized (see, for example, Axelrod
1981, 1984). However, only recently has a start been
made on the analysis of detailed quantitative models
(see the discussions in Dugatkin & Wilson 1991;
Ferriere & Michod 1994).

Our objective in this investigation is to introduce a
model which, although as simple as possible, contains
the key factors necessary to make the 1pp game with T-
and D-players more realistic. In the model players can
only play their neighbours in space and ‘remember’
their previous opponents only until they move out of
the neighbourhood. Thus if the opponent subsequently
returns it is treated as a stranger. This assumption is
adopted partly because it simplifies the model some-
what and is at the same time a good approximation in
many circumstances. The model could be modified to
take account of players with more powerful memories,
but this is very unlikely to have a crucial effect on the
results. The environment is assumed spatially homo-
geneous, and players move in space in a random
manner at a rate controlled by the parameters p, (for
T-players) and p, (for D-players). We suppose that
the spatial density of players is large enough for a
continuous model to be a good approximation, and
represent the random spatial motion by a standard
diffusion approximation leading to a pair of reaction-
diffusion equations. To model the fact that players
remember individuals whom they have played before,
itis necessary to introduce a ‘ getting-to-know’ function
g, the proportion of pairs of T- and D-players in a
neighbourhood who have already met; g thus varies in
both space and time. The relation of our model with
classical 1pp models can be seen by comparing the roles
of g and w the (constant) probability of players meeting
again. The value of w should clearly be derived from
the dynamics of the model rather than imposed on it,
as emphasized in Houston (1993) and Dugatkin &
Wilson (1991); in the current model g plays exactly
this role. We believe that the present model represents
a significant improvement over previous mathematical
attempts to describe the 1PD and explain cooperation.
Our results show that spatial structure with diffusion
sometimes leads to significantly new predictions. Thus
in any quantitative study of the 1PD in real populations
effort should be made to measure the dispersion rates
of the various behaviour-types as well as the pay-offs.

The model is derived and the underlying assump-
tions carefully described in §2, where the relation to
previous models (including those with spatial effects) is
also discussed. We then carry out an extensive
investigation, partly theoretical and partly compu-
tational, of various key points of importance for the
evolution of cooperation. In §3 it is assumed that the
distribution of players is spatially homogeneous. It is
worth noting that even without diffusion new effects
are to be expected. This is because the death rate on its
own has the result of reducing the number of players
which have previously had encounters. Diffusion of
course increases this effect. We find that there are
various possibilities depending on the parameter values
including the stable coexistence of T- and D-players.

Next we consider effects due to spatial inhomo-
geneities in the population. First, in §4 the question of
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stable coexistence of time-independent spatially
inhomogeneous states, or ‘patterns’ is studied. We
show that through a Turing instability such patterns
are produced for certain ranges of parameters. Next, it
is shown that under certain circumstances a stable
coexistence in a pattern is possible when coexistence is
impossible for a spatially constant distribution of
players.

Finally, in §5 we consider the question of invasion. It
is probably most realistic to assume that in many
circumstances a mutation will lead to a spatially
limited distribution of new strategists, say TFT. What
are the conditions under which this can invade? How
do the mobilities of the two species affect the situation?
For example it is commonly assumed (see Dugatkin &
Wilson, p. 690 (1991) and the critical remarks in
Ferriere & Michod 1994), that a low mobility of
T-players is good for themselves. However, we find that
no such simple conclusion is possible: sometimes it is
good for T-players to have an intermediate mobility.
However, our results do show that a high mobility of
D-players is good for them and bad for T-players. The
investigation is partly based on the analysis of travelling
waves, but we also present simulations showing that
sometimes a very small spatially limited ‘blip’ of
T-players may invade a population of D-players.
Indeed the total number of T-players needed to invade
may tend to zero as y, tends to zero, so an arbitrarily
small initial distribution of almost sedentary T-players
may invade a population of D-players. The paper
concludes with a discussion of results in §6.

2. THE MODEL

Let us first review the classical pp. This is played
between two individuals of similar appearance, each of
whom has to choose between the strategies C (co-
operate) and D (defect). The pay-offs to the con-
testants after a single round of the game are shown in
table 1. Note that it is always assumed that

y>a>d>pfand 2a > f+7y.

If the players only meet once then the only rational
strategy is for each to defect and so both players receive
the pay-off 0. However, the situation changes if the
same two players compete repeatedly leading to the
ipp. There are now more options available to the
players because each may decide to play C or D on a
round by any rule (deterministic or probabilistic) of
their choice. The rules that are adopted here are D
(which now means defect on every round) and T (the
tit-for-tat strategy). A T-player always starts by
cooperating and then repeats its opponent’s last play.
Note that a player cannot refuse to play the game even

Table 1. The matrix of pay-offs for the prisoner’s dilemma
with the strategies C and D.

C D
G a £
D v 0
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Table 2. The pay-off matrix for the 1PD with the strategies
TFT and D.

TFT D
TFT a/(1—w) L+ [wd/(1—w)]
D v+ [wd/(1—w)] o/ (1 —w)

if it recognizes an uncooperative opponent; this is a
standard assumption in the 1pp. If the probability of a
further round is w then the expected pay-offs to the
T-and D-players at the conclusion of their meeting are
as given in table 2.

Now consider a population of individuals, each of
whom is either a T-player or a D-player. These
individuals are able to move around in space and so
meet different opponents. At each meeting just one
round of the game is played. The rate of encounters
will depend upon the population density and so it is
necessary to modify the above pay-offs. It is not
reasonable to require that each encounter lasts for the
same length of time because this would lead to
difficulties when the population density was high. It is
now assumed that the pay-offs «, £, ¥y and ¢ are
measured in units of per capita growth rate. For
example, if D-players meet opponents half of whom
play D and half play C, then their per capita growth rate
will be (y+6)/2. Note that this pay-off is independent
of the number of encounters, for because pay-off
depends upon encounters per unit time, it does not
matter whether there are few encounters (each lasting
a long time) or many encounters (each lasting a short
time).

For the strategy T to make sense, T-players must be
able to recognize a past adversary. On first encounter,
i.e. with an unrecognized opponent, a T-player always
cooperates. The pay-offs are not received until after the
encounter ends and only then does each player realize
what its opponent has been playing. This is exactly the
same as for the classical situation of just two players.
If a T-player meets someone on a second (or later)
occasion then he instantly recognizes that opponent,
remembers what they played last time, and plays the
same himself (recall that he cannot refuse to play an
opponent). Thus the model equations not only depend
upon the number densities of T- and D-players (which
may vary in space and time), they must also keep track
of the types of encounters that have occurred, so that
when a T-player meets a D-player the probability of
this being a first encounter can be calculated.

In the model developed here, the probability of a
further round is not fixed a priori (which is the case for
the classical two-person 1pp) but rather it is part of the
solution. This is possible because diffusion, births and
deaths are explicitly included in the model equations.
The spatial environment in which the population
resides is assumed for simplicity to be one-dimensional.
When the model equations have been derived there
will be no difficulty in extending them to a higher
dimensional space and indeed some numerical results
for a two-dimensional region are presented. The
ultimate equations will take the form of partial
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differential equations but for the purposes of their
derivation space is discretized. Suppose that the line,
taken as the x-axis, is divided into contiguous cells or
sites of size /. These sites may be thought of as
containing social groups, or they might correspond to
the home-ranges. They must be sufficiently large that
relatedness is not important. Many authors have
commented upon the fact that cooperation most easily
flourishes when the game is played within a family (or
at least a related) group essentially because of kin
selection. However we are specifically looking for an
explanation for cooperation when individuals are
unrelated and kin selection is excluded in our model.
Also the cells must contain a sufficiently large number
of individuals for probabilistic arguments to be
appropriate and for the resulting differential (as
opposed to difference) equations to be valid. It will also
be necessary to introduce A4, a time interval in which
a fraction m of the individuals in a cell leave that cell.
It must be borne in mind that A¢ and [ are biologically
significant parameters, corresponding to generation
time and habitat size, and are not mathematical
constructs which are later made infinitesimally small.
However, A¢{ must be small compared with the
timescale of the problem and / must be small compared
with the overall size of the region. In the course of time
there will be contests played between many of the pairs
of individuals in a cell. Players may also leave the cell
by dying or by moving to an adjacent cell and also new
players may enter by being born or by migrating from
an adjacent cell. As the games are played, the
contestants accrue a pay-off which influences their
reproductive success. Simple haploid genetics (like
begets like) is assumed. A T-player will recognize an
opponent on subsequent occasions provided that
neither has left the cell where the encounter occurred.
Individuals who leave and who later return are treated
as first encounters.

It should be emphasized that our model is con-
tinuous and the approach will not be valid if the
densities are extremely low. There may be additional
effects due to very small group size, but these will not
be covered in our model. Also there will be a population
limitation term in the final equations (see next
paragraph) which will forbid very high densities. This
automatically removes the possibility of encounter
rates being unrealistically high (when there may be too
little time for recognition of the opponent).

Suppose that a typical cell contains lu T-players and
v D-players so that z and v are the line densities of the
two types. The pay-offs in the game (i.e. «, S, vy, 9)
determine the per capita growth rate. Thus if the pay-off
were § to each individual of a group of size z then their
numbers would increase at a rate &z in the absence of
all other effects. Let the number of D-players that a
typical T-player has already met (and so will recognize
next time they meet) be gvl. This T-player can meet
any of three types of individual and the fraction of time
which will be occupied by each type of meeting is as
follows:

T-player
u/(u+v)

known D-player
gv/ (utv)

unknown D-player
(1=g)v/(u+tv)
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The corresponding pay-offs are «, 6 and £ which imply
that the rate of increase of the T-players is:

ul[uar/ (u+v)] +[god/ (u+v) ]+ [(1 —g)vf/ (u+v) ]}
= {[u/ (utv)J(autfo); +[G(6—p)/ (utv)]

where G = guv. Similarly the rate of increase of
D-players due to interactions is:

v{[vd/ (utv)] +[gud/ (utv) |+ [(1 —g) wy/(ut+0)]}
= {[v/ (w+0) ] (yu+0v); =[Gy —9)/ (u+v)]

because a typical D-player will have already met gul of
the T-players in its cell and so only receives ¢ when it
plays them again. These growth rates have to be
modified by population limitation terms which we take
to have the forms «uF(u+v)and vF(u+v) for the T- and
D-players respectively. In the following discussion it is
assumed that logistic growth is appropriate, but other
limitation terms would be equally possible. Thus we
have:

FU)=b—(d+0oU)

where b and 4 are the intrinsic birth and death rates
and o measures the importance of overcrowding. It
will be assumed that the pay-offs are always beneficial
and contribute positively to the birth rate (rather than
negatively to the death rate), and so «, S, y, & will all
be considered non-negative. Consequently the per capita
death rate of either type of player is [d+ o (u+v)] and
is independent of the game. The final effect that has to
be considered is migration. As is usual this is modelled
by a random walk. Specifically, if mq, is the probability
that a T-player moves out of a cell into an adjacent one
in time A¢, then the diffusion rate of the T-players is
fp = mp*/(2A1). Similarly the diffusion rate of the
D-players can be written as pp, = mp %/ (2At). The
final form of the equations for the growth of the
populations is:

(Ou/0t) = {[u/ (u+v)](au+ pv)} +{[G/ (u+v)] (6 — )}
+ [uF(u+0)]+ [e(%/02%)] (1)
(Q0/0t) = {[v/ (u+v)](yu+0v)} —{[G/(u+v)](y— )}
+ [0F(u+v)]+ pp (0%0/x®)  (2)
where
F(U)y=b—d—aU. (3)

The possible variation of G in time and space now has
to be considered. Recall that G = guv is the number
density of T-D pairs within a cell that have already
met. This will be affected by: (i) deaths; (ii) migration;
and (iil) encounters. The first two of these will change
G but not g and so if Au, Av are the changes in u,v due
to the combined effects of death and migration in the
time interval A¢, then the corresponding change in G is

g(ulAv+ovAu) = G[(Au/u) + (Av/v)]

= G[2d420 (u+v) + (my/At) + (mp/ At)] At.
The number of encounters per unit time in a cell is
taken to be proportional to the number of pairings
within that cell. The encounter rate £ will be used for
the constant of proportionality. It follows that the

number of encounters that each individual has in unit
time is proportional to the local value of ¥+ and also
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that the change in G due to meetings in the time
interval Atis (uv — G) kAt where k is the encounter rate.
We thus have

(8G/0t) = kuv —G[k+2d+20(u+v) + 0] (4)
where
0= (2/1) Kyt Kp)- (9)

The model equations (1-5) have to be supplemented
by boundary conditions. We shall always use Neumann
conditions for the spatial boundary conditions (which
corresponds to the biologically reasonable condition
that there is no net flux of players through the
boundaries) together with appropriate conditions for «,
vand G at ¢t = 0. It is clear that if the spatial region is
two dimensional only minor changes have to be made
to the model equations (apart from interpreting » and
v as numbers per unit area) and the general forms of
the boundary and initial conditions are unchanged.

If we ignore equation (4) and take g to be a constant
then the equations above provide a simple dynamic for
the model of Maynard Smith (1982) or Axelrod (1984)
for the 1pD with g replacing w, the probability that two
players have another round of their contest. Thus we
have a model for the 1pD in which each contest has the
same expected number of rounds. For the 1pD it is well-
known that when the population is composed of T- and
D-players the equilibrium point at which the whole
population is composed of defectors, all-D, is always
stable (i.e. always an evolutionarily stable strategy or
Ess) and that the other boundary equilibrium solution,
all-T, is also stable provided that

w> (y—a)/(y—9). (6)

For the model presented above, the solution all-D is
also always stable (provided that it is viable, i.e.
provided that 4 ¢ > d). The conditions for all-T to be
stable are the viability condition s+« > d and

kloa—8)/(y—a) > 20+ 2b+6. (7)

Also, from the equation for G, it is readily found that
the value of g at this boundary equilibrium point is

{20+ k+a+y+0)—[(2b+k+a+y+06)?
—4k(y—0)1}/[2(y—)] (8)

and from (8) it can be shown that (7) is equivalent to
(6). The critical case of equality is when an interior
equilibrium is crossing the w-axis and this causes a
change in the stability of the all-T equilibrium point.

In terms of g the contribution of the game to the
growth rate of the T-players is

[/ (utv) {ou+[B(1 —g) + 6] v} (9)
and for the D-players it is
[0/ (ut) {7 (1 —g) +0g] u+dv}. (10)

These expressions show that g plays the same role as w
in the 1pD. In particular the expected number of rounds
in a contest between D- and T-players (conditional
upon the players having met) is 1/(1—g) at an
equilibrium. Although g is the biologically more
important variable, it is mathematically more con-
venient to use G in the final equations.
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The population limitation term assumed (equation
3) corresponds to logistic growth and is in the spirit of
Cressman & Dash (1987) and Cressman (1992) who
propose a modification of the classical Taylor-Jonker
replicator equations. The model actually used here
appears superior to the classical 1pp with dynamics
because the mobility, population density and mortality
determine the expected length of game. Thus the
model meets a criticism of the usual 1PD made by
Houston (1993). We discuss finally comparable models
which involve a spatial factor together with the
restriction that players only have encounters with their
neighbours.

Cellular automata models which are discrete in
space or time have appeared fairly frequently in the
literature. One of the most recent is that due to Nowak
& May (1992,1993), see also comments in Sigmund
(1992) and Huberman & Glance (1993). This model
does not incorporate any memory for the players and
is thus not an iterated game. It is interesting in that it
nonetheless predicts coexistence of cooperators and
defectors. The model is based on two assumptions
crucially different from ours and a direct comparison is
impossible: (i) it is a ‘one-round’ game; and (ii) it
assumes discrete spatial patches with one individual
per cell and discrete time (non-overlapping genera-
tions). Concerning the second assumption, it may be
argued that all models which are discrete in space
suffer from being sensitive to the updating procedure
assumed and of course discrete generations also
encourage curious effects. Here we have overlapping
generations and continuous space so that possibly
artificial effects due to discretization are completely
avoided.

A model for cooperation which is broadly in the
same spirit as ours is that described in an interesting
paper by Dugatkin & Wilson (1991). This model is
stochastic and only defectors are assumed to migrate.
Thus the technicalities differ quite considerably from
those in the present paper.

An approach which is fairly similar to that presented
here is that due to Ferriere & Michod (1994). Their
model is simpler and they are able to utilize known
results (Hutson & Vickers 1992) concerning the
solution of the governing partial differential equations
to predict the direction of travelling waves. However,
they assume that their equivalent to g is constant in
space and time. Thus their model cannot predict the
occurrence of patterns. It does incorporate the im-
portant feature that players will contest with neigh-
bours, and its relative simplicity is also a very attractive
feature.

3. SPATIALLY HOMOGENEOUS PLAYER
DENSITIES

The principal aim in deriving the model in §2 is to
consider the effect of spatially inhomogeneous distri-
butions of players. However, we shall see that even if
the distributions are homogeneous, there are significant
differences in the results from those for standard
models. Initially this may appear surprising, but on re-
examination there are good reasons for the differences.
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In the case of our model: first, players only play with
their near neighbours and secondly they may leave the
neighbourhood or die. Both of these factors cause the
memory of previous encounters to be lost and have a
crucial effect on the outcome.

When the densities 4 and v of the T- and D-players
and the getting-to-know function g depend only on ¢
(but not on x), the system shown by equations 1-5
reduces to the following system of ordinary differential
equations.

du/dt = {[u/(u+v)](cu+ fv)}
+{[G/(u+v)](6—=P)}+ulb—d—o(u+0v)] (11)
dv/dt = {[v/(u+v)](yu+dv)}
=[G/ (utv)](y=0)}+ov[b—d—o(utv)] (12)

dG/dt = kuv—G[k+2d+ 20 (u+v) + 0], (13)
where
0= (2/8) (hp+Hp)- (14)

Of course, although spatial homogeneity holds,
diffusion still has a significant role, entering the above
system through the parameter 6. Furthermore, because
of the existence of a death rate, even when 6 = 0 the
model does not reduce to a standard 1pp model because
of the variation in g.

Let us start by noting that with a standard model,
that is with ¢ = G/(w) constant (of either replicator or
Cressman type), the game will have one of two simple
structures. In one of these there are stable equilibria
with only T-players and only D-players (and an
unstable coexistence equilibrium), and in the other
there is a stable all-D state and the only other
equilibrium, that with just T-players, is unstable.
Consider first cases with p, = pp =0. Then, in
addition to the possibilities just described, there is a
range of parameters leading to a stable coexistence of
cooperators and defectors with two coexistence states
(one stable and one unstable) as well as a stable state
with only D-players and an unstable state with only T-
players. The phenomenon of having stable coexistence
of the two types of players also occurs in the model of
Dugatkin & Wilson (1991). Of course exactly the same
structure is possible with p, and pp positive. Typical
cases are illustrated in figure 1.

A question of particular interest is how a mutation of
TFT in a population of D-players can lead to a stable
state where some or all players are TF1’s. The difficulty
is that a mutation is likely to cause only a small number

(@) ®» ()

e Us

us

u

Figure 1. S and US denote stable and unstable equilibria
respectively. The sequence (a), (b), (¢) corresponds to
decreasing a which causes T-players to be less “fit’. In (a) all-
T is stable, in (b) all-T is not stable, but stable coexistence is
still possible and in (¢) there is no stable state with T-players.
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(@) (®)

S Us
u u

Figure 2. Where defectors cannot live on their own: (a) the
all-T equilibrium is stable; (b) the all-T equilibrium is
unstable and T-players are vulnerable to invasion by
D-players with the eventual result that both populations are
wiped out.

of new types to appear and it is difficult to see how
these may increase. However, in the present model for
certain parameter ranges the basin of attraction of the
all-D equilibrium is extremely small, so a small number
of T-players may invade. We shall return to this
question in §5 when considering spatially inhomo-
geneous effects as it is probably more realistic to
suppose that a mutation is restricted to a limited region
of space and ask how it evolves.

A final possibility is of some interest. For certain
parameter ranges D-players cannot exist on their own
but T-players can. If this point is stable the final state
may be either extinction of both types, or TFT only,
depending on the initial populations (see figure 2a).
On the other hand, the all-T equilibrium may be
unstable. In this case it may happen that if a small
number of D-players is introduced then their number
will increase, but these will have a deleterious effect on
the T-players and both populations will become extinct
(see figure 2b). The well-being of TFT is fragile in this
case. Another possibility is that there may be a stable
interior equilibrium; biologically this corresponds to
D-players existing as parasites on T-players, whilst
being unable to live on their own.

In conclusion, it is important to note that a
consideration of spatially homogeneous populations
alone may lead to misleading results. The dangers are
illustrated by two specific examples considered in
detail in §4. In the first, a stable equilibrium becomes
unstable when spatial inhomogeneity is introduced, a
pattern being produced. In the second there is a
pattern when coexistence is impossible for homo-
geneous densities. It is therefore dangerous to ignore
spatial inhomogeneity. It appears that the 1D should
be tackled via a model in which spatial inhomogeneity
is taken into account. We next turn to these issues.

4. PATTERNS

It is shown in this section that the model equations 1-5
can have stable, stationary, spatially non-homogeneous
solutions (i.e. patterns), and this will be illustrated
later when numerical solutions are shown for a two-
dimensional region. In the first instance a standard
linearization argument is presented to show that a
stable solution of the spatially homogeneous equations
11-14 may be unstable for the full equations provided
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that the diffusion rates are suitably chosen. In other
words these equilibria are sometimes susceptible to
Turing instabilities.

The behaviour of these patterns has been investi-
gated numerically when some parameter of the
problem is varied. The most remarkable finding is that
it is possible for the equilibrium point (which originally
gave rise to the pattern via a Turing instability) to
disappear and yet the pattern remain: this is remi-
niscent of the smile of the Cheshire cat. When the
equilibrium point has disappeared there is a spatial
pattern which has no counterpart in the equations
11-14. Indeed the only equilibrium solutions that these
latter equations then have correspond to the popu-
lation being composed entirely of either T-players or
D-players. There is not even an unstable equilibrium
solution implying co-existence and yet the equations
with spatial terms have a stable solution in which both
types of player are present. This phenomenon is further
commented upon in the final section.

The standard technique to find a Turing bifurcation,
see for example Murray (1989), for a system of
equations of the form:

(Ou;/01) = [ i) + (1, Auy)]

(1<i<nueR" xeQc R (15)

which have an equilibrium solution u =#, is to
assume a solution of the form

;= [+ (c; pe”)]
Here ¢ is an eigenfunction for the Laplacian on £, i.e.
A = —pp (x€), (3¢ /on) = 0 (x€2Q) (17)

for some eigenvalue p. For example, if Q = [0, 1] then
p = m?m® for some integer m. If the solution 16 is
substituted into the equations 15 and a linearization in
the ¢’s carried out, it is readily found that @ must
satisfy an eigenvalue equation of degree n. For the
model equations under consideration, these equations
are algebraically complicated and have to be solved
together with the equilibrium conditions which are
also non-trivial. No striking simplifications appear
possible, but the equations are quite easy to handle
numerically. For any given set of parameters («, £, v,
0, 0, b, d, k, Wy, Bp, 0) it is necessary to compute the
interior equilibrium point(s) (of course, there may not
be any), determine their stability (by checking the real
parts of @ when p; and py, are both zero) and then, if
there is a stable equilibrium point, determine whether
or not it can be made unstable by a suitable choice of
Hp and pp,.

Consider first the behaviour of the system of ordinary
differential equations 11-14. Figure 3 indicates one of
the possible modes of behaviour of the equilibrium
points in the u-v plane as « is varied. For small values
of « there are only the two boundary equilibria, all-T
(which moves along the ¢-axis) and all-D (the point P,
which is independent of «). The first is unstable and
the second one stable. As « is increased, a pair of
equilibria appear first at A. One of these is unstable
and moves along the branch AB as « increases. It must
be remembered that « is not an entirely free parameter.

(1<i<n). (16)
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Figure 3. Typically movement of equilibrium points in the
u-v plane as « is increased. The dotted portion of the curve
denotes unstable points, the solid portion denotes those
susceptible to a Turing instability, and the dashed portion
denotes unconditionally stable points.
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Figure 4. Pattern solutions when there is no internal
equilibrium solutions: a =12, #=0,y=16,0=1, 0 =1,
0=05b=1,d=1, p, =0.02, p, = 0.3. (a), (¢), (c) and
(d) show the distribution of «, v, G and g in space, their
maximum values being 2.1, 2.9, 1.5 and 0.39, respectively.

It is the constraint that a has to be less than y which
here prevents the unstable equilibrium point from
reaching O. The other equilibrium point, which is
stable, moves along the curve AC. As a is increased
further, this point moves towards the u-axis and
reaches it at Q. When it does so the boundary
equilibrium point all-T undergoes a bifurcation and is
now stable for all larger values of o.

Consider now the same parameter set but this time
with the system of partial differential equations 1-5.
When the equilibrium point is on the section AC of the
curve in figure 3, it is capable of undergoing a Turing
instability if p, and Py are suitably chosen. At C, which
almost corresponds to a maximum in v, the equilibrium
point becomes unconditionally stable, i.e. Turing
instabilities are no longer possible. Let a be reduced
and track a solution of the model equations rather than
just the homogeneous equilibrium points in the w—v
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plane. For large « there is just a stable, spatially
constant solution corresponding to a point on the u-axis
(together with the ever-present stable equilibrium
point P). As a is reduced, a stable (but still spatially
uniform) solution with both T- and D-players develops.
This is the branch QC. But, providing the diffusion
rates have been suitably chosen, a pattern is formed
somewhere along the branch C to A. This non-
homogeneous, stable solution can be followed as o
decreases towards its value corresponding to the point
A. But by the time that « has this critical value, the
pattern solution is sufficiently separated from the
equilibrium point that its existence continues on after
this point has disappeared (by merging with the
unstable equilibrium solution that has been moving
along BA). The existence of a pattern in a situation
where there is not even an interior equilibrium point is
unusual. Figure 4 illustrates, for a two-dimensional
rectangular region with aspect ratio 2:1, such a
pattern.

The above gives an overview of the essential features.
We now present some further analysis which describes
some of the more complex behaviour of the model.
Figure 5 illustrates the nature of the equilibrium points
in the (a,0)-plane, all other parameters having been
fixed. The pair (a,0) were chosen because of their
particular importance; o being the pay-off to two
cooperators, ¢ being the pay-off to two defectors. The
permitted region, which is defined by

y > o> max[d, (B+7)/2],

is shown in figure 5 bounded by solid lines. For the
parameter set shown in the figure the following lists the
three events which occur as « and ¢ are varied.

1. An interior equilibrium point may appear out of
the all-T equilibrium point (7, 0). When this happens
the stability of the all-T point is changed. This is shown
as a dot-dash line in the figure.

2. Two interior roots may appear (originally as a
double root). This is shown as a line of short dashes.
One of the roots is always stable and the other
unstable.

3. An interior, stable equilibrium point may cease
to be unconditionally stable and instead become sus-
ceptible to a Turing instability. This event is bounded
by the line of long dashes.

For other parameter sets (i.e. values of a, 3, v, 6, 7, b,
d, k, Wy, Bp, 0) there are two further possibilities.

4. An all-T or all-D equilibrium point may appear
from the origin.

5. An interior equilibrium point may appear out of
the origin.

The lines corresponding to the events 1,2 and 3
above, divide the permitted region of the a-0 plane into
four subregions which have been coded according to
the types of equilibrium points present on the u-axis, on
the v-axis and in the interior. We use s and u to denote
stability and instability, respectively. Thus the code
u/s/us implies that there is an unstable point on the u-
axis (i.e. all-T'), a stable point on the v-axis (all-D) and
two interior points, one of which is stable and the other
unstable. The letter ¢ indicates the presence of a stable
point (for the system 11-13) which may undergo a
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Turing instability if the diffusion rates are suitably
chosen. Also a dash in the code indicates that there is
no equilibrium point in that region. It is possible to
generate very complicated pictures of sub-regions.
Certainly there may be as many as 11 in one diagram
(without any parameter value exceeding 2). The
dotted line in figure 5 indicates how, for the situation
described in figure 3, the behaviour changes with
varying «. The points labelled @, C, 4 and B
correspond to the respectively labelled points in the
earlier figure. However, the scenario may be more
involved than that shown in figure 3. For example it
may happen that as « is increased the representative
point passes through sub-regions which are coded as
follows:

u/-/-

internal double root appears
u/-/ut

one root enters the origin

u/-/t

interior point ceases to be of Turing type
u/-/s

interior point crosses the u-axis
s/-/-.

Although this is an extreme case, subsequences of the
above serve to show how the picture may change as the
pay-offs are varied. Although the effect of increasing o
(the cooperators pay-off) is very complicated, the
extreme values of a give easily interpreted results.
Small o makes it difficult for the T-players to exist
(typically an unstable point on the u-axis) whereas
large o gives a stable population of T-players. What is
intriguing is the catalogue of intermediate possibilities
as internal equilibrium points appear (and disappear)
and whose stability change. They may be regarded as
transitional situations in which T- and D-players are
truly struggling for domination. However, some of the
regions of parameter space occupied by these situations
are large and it may not be possible, because of the
nature of the game, to evolve out of them (or at least
not by any permissible change in the pay-offs). Thus it
is not possible to rule out any of them.

In interpreting the biological implications of these
results, an important consideration is the strength of
the fitness effects of playing the 1pD relative to the
background population pressures. A reasonable
measure of the relative size of these two effects is
provided by the ratio of the equilibrium population
sizes of all-T and all-D individuals, i.e. by @/7. If this
ratio is large the game is important, whereas if it is near
unity it is the underlying population dynamics which
are dominant and then most of the interesting effects
do not occur. It could be argued that defectors
effectively ‘fight’ one another, whereas cooperators
assist each other (as in several of the situations discussed
by Axelrod (1984)). A quite large value of #/7 may be
appropriate in such circumstances. On the other hand,
a mutation (perhaps of a D-player to a T-player)
might lead to a more modest ratio, say less than 3.

As mentioned earlier, a pattern formed at a Turing
instability may be tracked beyond the existence of the
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Figure 5. The behaviour of equilibrium points in the (e, §)
plane showing where double roots and Turing instabilities
occur and also where an interior point crosses the boundary.
The dotted line shows the effect of changing «; the points B,
@, C and 4 correspond with those in figure 3.

equilibrium point. For example, using the parameter
set of figure 5 and a = 1.5, p, = 0.005, p, = 0.03 a
pattern was traced from & = 0.075 to & = 0.25. The
equilibrium point disappears at § ~ 0.13. For these
parameters the game dominates over the birth and
death terms. The ratio #/7is around 6 for the situation
just described. However it is possible to make this ratio
arbitrarily close to 2 and still get a Turing instability
(although rather extreme values of the diffusion rates
may be needed for it to manifest itself). It is certainly
easier to get a Turing bifurcation when the fitness
effects of the game dominate the population terms, but
such an eventuality is not prohibited by modest values
of #/7. Generally speaking, increasing ¢ (the defectors
pay-off) has rather simpler consequences than in-
creasing o. Interior equilibrium points tend to lose
their stability, via a Turing bifurcation, and then
coalesce (with an unstable point) so that the final result
is all-D as the only stable equilibrium point. Of course
the limiting value of § is @ at which point the defectors
are getting just the same pay-offs as the cooperators
(when each plays with one of its own type) and so the
cooperators are never doing better.

The most important point is that the inclusion of
space has produced a phenomenon which would not
have been guessed if the spatially homogeneous
equations 11-13 alone had been studied.

5. INVASION BY T-PLAYERS

From the point of view of the evolution of cooperation,
one of the most difficult problems is to understand how,
in a population of D-players a small proportion of T-
players (produced by mutation in the same species or
by invasion of a new type) can increase and lead to a
situation where only T-players exist, or perhaps where
there is a stable coexistence of T and D-players. We
examine this question here and point out the crucial
role that spatial inhomogeneities in distribution play.
A second key point is to discover the role that the
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Figure 6. Diagrammatic representation of spread of T-
players with an initially small spatially restricted distribution.

mobilities (for the T and D-strategists) play in
determining which strategy is the more robust, and this
is the second main area of investigation in this section.

We shall, for simplicity, restrict ourselves in this
section to the case where there are exactly two stable
equilibria, one with D-players alone and one with T-
players alone, and an unstable coexistence equilibrium.
(Closely analogous arguments hold when there is a
stable coexistence equilibrium instead of the all-T
equilibrium.) When only spatially homogeneous distri-
butions are considered, the situation is relatively
straightforward. The phase space is split into two
regions, the ‘basins of attraction’ of the equilibria.
However, the situation is a great deal more complicated
for spatially inhomogeneous distributions. For the
basins are now sets of functions, the initial densities,
rather than sets of points, and the ‘shape’ of the
functions will be an important factor. In addition the
diffusion coefficients py and pp, will play an equally
important role. These considerations have led to the
idea of the ‘dominance’ of equilibria (see Fife 1979).
Roughly, the all-T equilibrium for example is said to
be dominant if a localized distribution of T-players in
a population of D-players grows and wipes out the D’s.
A definition which is probably equivalent (although no
strict proof of this exists at the moment) is that the
travelling wave (see below for the definition) of
invasion will go towards the all-T equilibrium. A
theoretical treatment presents rather formidable
difficulties, and in this investigation we shall restrict
ourselves to a computational study, with the intention
of returning to the problem from a more theoretical
point of view later.

We consider a spatial domain [—1,1] and suppose
that in a homogeneous population of D-players of
density 7 a small, spatially restricted group of T-players
appears. We assume that the initial values u,, v, satisty
uy(x) +0y(x) = v and

up(x) = 0.75 exp (—px?).
Define

F=(1/20) L 1y (x)dx.

F is thus the total initial population of invading T-
players expressed as a fraction of the total population,
27, of D-players. Suppose first that py = py. If p is not
too large (i.e. F is not too small), the T-players will
invade and take over completely as schematically
shown in figure 6: that is, the all-T equilibrium is
dominant.

Suppose next that p,, is fixed but p, is made very
small. Then computations show that (assuming that
the peak of the distribution, 0.75 in this example, is
not too small) the total number of T-players needed for
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Table 3. The fraction of T-players requived to successfully
wnvade a population.

(Parameters are and a =7, #=0, y=9, §=1, £ =12,
o=1, =325 d=1, u, =0.001 and 6 = 250(p,+U,).
The equilibrium values of T- and D-players on their own are
9.25 and 3.25 respectively. F is the minimum fraction total
initial T-players / total initial D-players needed for invasion.
There is strong evidence that F—->0 as p,—>0, so for
a sedentary population (U, =0), an arbitrarily small
distribution of T-players may invade.)

Ha F

0.004 0.093
0.002 0.052
0.001 0.033
0.0005 0.022
0.00025 0.016
0.000125 0.011

=T

Figure 7. A typical travelling wave. With ¢ < 0 as shown, the
D-equilibrium is dominant.

invasion also becomes small and in fact tends to zero as
Wy tends to zero, see table 3. This is a remarkable result
and shows that an arbitrarily small initial distribution
of almost sedentary T-players can invade a population
of D-players. This appears to provide a partial answer
to the paradox of how T-players may ‘get off the
ground’.

A consideration of the direction of travelling waves
shows that unless (Uy 4+ Hp), and so 0, is fairly large, the
all-T equilibrium is dominant and a small distribution
of T-players will always invade. However, for large
enough 6 (corresponding to high mobility of at least
one type) the all-D equilibrium becomes dominant.

Of course the situation is not always so favourable
for T-players. For different interaction parameters the
effect of the diffusion coefficients can be rather
different. It is conventional (see the discussion in
Dugatkin & Wilson 1991 for example) to expect that
increase of mobility, that is of p, or py, or both, will be
‘bad’ for T-players and ‘good’ for D-players, for
mobility reduces the number of T-T interactions. This
fits with the above example. However, it turns out that
the full picture is a great deal more complex. We do not
attempt a complete resolution of the problem here, but
give a further example which in conjunction with the
previous example suggests the complexity of the
problem.

We start this example from the point of view of
waves of invasion. That is we discuss the speed
of solutions of the form (u(x—-ct),0(x—ct),G(x—ct)),
known as travelling waves. Figure 7 represents a
typical ‘photograph’ of the wave at a given time. The
sign of ¢ decides which of the equilibria is dominant.
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Figure 8. « = 1.3725, =09, y=145,6=1, k=4, b=
0=d,o0=1,60=100(n,+Ny). The hatched region is ¢ >0
when all-T is dominant and in the rest of the region all-D is
dominant. Notice that the effect of increasing [, is first good
for T-players but eventually bad for them.

If all parameters except py and py, (and 0) are fixed,
the situation is represented by the graph in figure 8.
Notice that for small or large p, the defectors win
whereas for medium p, it is the T-players that win.
There is a double reversal of the wave direction. This
is not consistent with the simple view that to be
sedentary favours T-players; a measure of mobility can
favour T-players. In order to interpret this result,
consider what happens as [, is reduced at each of the
points A and B marked on figure 8. These points are
where there is a stalemate, i.e. there is a travelling wave
with zero speed. When p, is reduced, the wave front of
the T-players steepens so that « is reduced (from a
small value) in the leading edge of the wave. The key
factor is that at A the number of encounters between
any given two players is determined by the death rate
while at B it is by mobility. At B, G and g increase
significantly, causing the per capita birth rate in u to
increase. Thus the T-players have the advantage and a
wave develops in which the T-players advance. By
contrast, at A there is little change in G and g so that
the per capita birth rate of « is mainly influenced by the
decrease in u (see equation 9), and this causes the D-
players to have the advantage. The same type of
argument suggests that reducing py, is always bad for
D-players and this is consistent with figure 8.

It may be noted that the implications of the results
in the two cases treated above differ in one crucial
respect. This is that if p, becomes very small, in the first
case T-players are favoured, whereas in the second case
it is bad for these players.

For ease of description we shall use Cases I and 11 to
denote the situations described above. Thus Case I will
be taken to mean that decreasing p, favours the
invasion by T-players (as described in table 3), whereas
Case II means that we are in the situation described in
figure 8, where small p, is disadvantageous for T-
players.

The distinction between these two cases clearly has
important biological implications. It is an extremely
difficult mathematical problem to give an explicit
criterion in terms of the parameters for the switchover
between the two cases. However, in view of the
importance of the distinction, we present some further

Phil. Trans. R. Soc. Lond. B (1995)

The spatial struggle of tit-for-tat and defect

4 —
II
3 -
I
I
2 —_—
1 1 | | |
0 10 20 30 40

k
Figure 9. Parameters a =7, f =0,y =9, o =1, b = 3.25,
d=1, 6 =0 (corresponding to very small (L, and H,). In
region I a decrease in [, favours T-players with invasion
possible from very small populations. In region II, small [
is bad for T-players and leads to the situation described in
figure 8.

computations which illustrate the influence of two key
parameters 0, £ on this switchover. The switchover
point is calculated for very small p, and py (so that
effectively 6 = 0). The results are given in figure 9
where the regions are correspondingly marked.

Some remarks on the biological interpretation are as
follows. The first parameter used is 6, which governs
the population level of D-players on their own. The
second £ is the encounter rate; clearly large £ tends to
favour T-players (because many of their encounters
with D-players will be second encounters). The
expected effects of changing these parameters are well
reflected in the diagram. An increase in ¢ will be bad
for T-players in the sense that they will be unable to
invade if their initial population is small. However, this
effect will be compensated for by increasing the
encounter rate k. For example, when & is 3, the
switchover occurs when £ is about 19; for £ above this
value T-players may invade from rarity.

As mentioned in the previous section, a measure of
the importance of the game versus the background
population pressure is provided by the ratio @/v. For
the largest value of ¢ in figure 9, ¢ = 4, this ratio is
about 1.5, which is probably quite modest in a
biological context. One may also remark that the
values of £ do not seem excessive. Rather than
attempting to interpret the size of £ directly, it is more
illuminating to consider its effect upon g. Recall that g
represents the proportion of pairs of T- and D-players
which have met. In the case just discussed g is about 0.7
on average over the spatial region. This means that the
expected number of encounters between any particular
pair of T- and D-players (conditional upon them
having met) is about 3. This appears to be a very
reasonable figure in many situations where the 1PD may
be visualized to operate.

Finally, the results in this section partly confirm and
partly differ from those of Dugatkin & Wilson (1991)
and Ferriere & Wilson (1994). We find that an
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increase in W is always good for D-players (which
agrees with the first but not the second of these
references) whereas increasing p, may In certain
circumstances favour T-players (which agrees with the
second but not the first). It is probable that the
differences are due to an incorporation of the function
g in our model.

6. DISCUSSION

The model presented here has two important novel
features: (i) the explicit inclusion of diffusion; and (ii)
the incorporation of a ‘ getting-to-know’ field variable,
g. This function keeps track of players’ encounters and
depends on position and time; in our view the
incorporation of such a function in the governing
equations is essential for a proper understanding of the
model. The combination of these two aspects allows us
to calculate explicitly the expected number of rounds
in each encounter viz 1/(1 —g) for meetings between a
T- and a D-player. Thus the model is self-contained in
that this number is part of the solution rather than part
of the specification. It is also important to include
diffusion explicitly because the relative mobility of the
two types of players (tit-for-tat and always-defect) has
a crucial effect upon the outcome, partly by limiting
the number of rounds to an encounter and partly by
allowing players to move to new regions of space.

The behaviour of the model has several significant
aspects and they are briefly commented upon below.

1. Itis possible to have stable coexistence of T- and
D-players with spatially homogeneous densities.

2. A Turing bifurcation of this stable equilibrium
may occur leading to a spatial pattern. Indeed there
may be a pattern when there is no homogeneous
coexistence state.

3. Invasion of a population of D-players by a very
small number of T-players is possible, especially if the
mobility of the T-players is low.

4. As p, the diffusion rate of the T-players, is
increased the direction of the travelling wave con-
necting the equilibrium points all-T and all-D may
undergo two-sign changes.

The above phenomena demonstrate that the present
model has a remarkable richness of behaviour. The
stable coexistence referred to in point 1. does not seem
to be possible if there is also a stable equilibrium point
corresponding to all-T. There is always — when viable
— a stable equilibrium point where all the players are
defectors. That sometimes the coexistence point may
be susceptible to a Turing bifurcation as one of the
parameters is varied is not particularly remarkable (in
so far as any Turing instability is unremarkable) but
that it may persist after the equilibrium point that gave
birth to it has disappeared is quite curious. It implies
that it is all but impossible to state with any confidence
the range of behaviour that this type of model may
exhibit if only the homogeneous (spatially indepen-
dent) equations have been analyzed. There are
occasions when the inclusion of space introduces
entirely new and unsuspected behaviour.

Consider finally the fate of potential invaders.
Suppose first that these appear as a small, spatially
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limited clump. If there are two stable equilibria, all-D
and all-T, then it is not surprising that, if the basin of
attraction of all-D is small, it can be invaded by a small
number of T-players. But note that their maximum
density has to be sufficiently high even if their total
numbers are low. What does not seem to have been
remarked upon previously is that if the invaders have
a very low diffusion rate then the total number can be
made arbitrarily small, although again the maximum
density must be high enough to overcome the invasion
barrier of the residents.

The direction of travelling waves (broadly equi-
valent to the success of potential invaders) depends in
a very complex way upon the diffusion coefficients, the
pay-offs and the population limitation term. The
intriguing question is, what determines their direction?
The present model is too involved for us to separate out
the relative importance of the various factors. Suffice
it to say that we have performed other numerical
experiments on simpler models (not involving 1pD) and
it is clear that the complexities, although compounded
here, are certainly not due to any odd feature of this
model. This is a fascinating area of study and the
authors will, in subsequent publications, investigate it
further. The most noteworthy point here is that large
or small diffusion cannot unambiguously be claimed to
be good for the strategy tit-for-tat, rather it depends
upon the entire game and the mobility of the other
contestants. Remarkably, in some circumstances an
increase of [ is advantageous for T-players when p is
small, but too large an increase is then to their
disadvantage.

We are grateful to R. Ferriere and R. Michod for a preprint
of their very interesting paper and also to K. Sigmund, R.
Ferriere and R. Michod for most helpful discussions in
connection with this investigation. We are also grateful to the
referees for many constructive suggestions which have led to
an improvement in the paper.
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